Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
1.
Environ Toxicol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578024

ABSTRACT

The clinical outcomes of osteosarcoma are relatively dismal. As immunotherapy has revolutionized treatment for solid tumors, exploring novel immunotherapy-related therapeutic targets for osteosarcoma is important. In this study, we aimed to establish the connection between RNA modification and immunotherapy in osteosarcoma to identify novel therapeutic targets. An RNA modification-related signature was first developed using weight gene correlation network analysis and a machine-learning algorithm, random forest. The signature's prognostic value, drug prediction, and immune characteristics were analyzed. EIF4G2 from the signature was next identified as a critical immunotherapy determinant. EIF4G2 could also promote tumor proliferation, migration, and M2 macrophage migration by single-cell sequencing analysis and in vitro validation. Our signature and EIF4G2 are expected to provide valuable insights into the clinical management of osteosarcoma.

2.
Medicine (Baltimore) ; 103(16): e37879, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640268

ABSTRACT

In response to the high incidence and poor prognosis of lung cancer, this study tends to develop a generalizable lung-cancer prediction model by using machine learning to define high-risk groups and realize the early identification and prevention of lung cancer. We included 467,888 participants from UK Biobank, using lung cancer incidence as an outcome variable, including 49 previously known high-risk factors and less studied or unstudied predictors. We developed multivariate prediction models using multiple machine learning models, namely logistic regression, naïve Bayes, random forest, and extreme gradient boosting models. The performance of the models was evaluated by calculating the areas under their receiver operating characteristic curves, Brier loss, log loss, precision, recall, and F1 scores. The Shapley additive explanations interpreter was used to visualize the models. Three were ultimately 4299 cases of lung cancer that were diagnosed in our sample. The model containing all the predictors had good predictive power, and the extreme gradient boosting model had the best performance with an area under curve of 0.998. New important predictive factors for lung cancer were also identified, namely hip circumference, waist circumference, number of cigarettes previously smoked daily, neuroticism score, age, and forced expiratory volume in 1 second. The predictive model established by incorporating novel predictive factors can be of value in the early identification of lung cancer. It may be helpful in stratifying individuals and selecting those at higher risk for inclusion in screening programs.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , 60682 , Bayes Theorem , Biological Specimen Banks , Machine Learning , Risk Factors
3.
Article in English | MEDLINE | ID: mdl-38573495

ABSTRACT

Nanoscale preparations, such as nanoparticles, micelles, and liposomes, are increasingly recognized in pharmaceutical technology for their high capability in tailoring the pharmacokinetics of the encapsulated drug within the body. These preparations have great potential in extending drug half-life, reducing dosing frequency, mitigating drug side effects, and enhancing drug efficacy. Consequently, nanoscale preparations offer promising prospects for the treatment of metabolic disorders, malignant tumors, and various chronic diseases. Nevertheless, the complete clinical potential of nanoscale preparations remains untapped due to the challenges associated with low drug loading degrees and insufficient control over drug release. In this review, we comprehensively summarize the vital role of intermolecular interactions in enhancing encapsulation and controlling drug release within nanoscale delivery systems. Our analysis critically evaluates the characteristics of common intermolecular interactions and elucidates the techniques employed to assess them. Moreover, we highlight the significant potential of intermolecular interactions in clinical translation, particularly in the screening and optimization of preparation prescriptions. By attaining a deeper understanding of intermolecular interaction properties and mechanisms, we can adopt a more rational approach to designing drug carriers, leading to substantial advancements in the application and clinical transformation of nanoscale preparations. Moving forward, continued research in this field offers exciting prospects for unlocking the full clinical potential of nanoscale preparations and revolutionizing the field of drug delivery.

4.
Chem Sci ; 15(15): 5738-5745, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638237

ABSTRACT

Mechanically responsive molecular crystals have attracted increasing attention for their potential as actuators, sensors, and switches. However, their inherent structural rigidity usually makes them vulnerable to external stimuli, limiting their usage in many applications. Here, we present the mechanically compliant single crystals of penciclovir, a first-line antiviral drug, achieved through an unconventional ferroelastic transformation with inverse temperature symmetry breaking. These crystals display a diverse set of self-restorative behaviors well above room temperature (385 K), including ferroelasticity, superelasticity, and shape memory effects, suggesting their promising applications in high-temperature settings. Crystallographic analysis reveals that cooperative molecular displacement within the layered crystal structure is responsible for these unique properties. Most importantly, these ferroelastic crystals manifest a polymer-like self-healing behavior even after severe cracking induced by thermal or mechanical stresses. These findings suggest the potential for similar memory and restorative effects in other molecular crystals featuring layered structures and provide valuable insights for leveraging organic molecules in the development of high-performance, ultra-flexible molecular crystalline materials with promising applications.

5.
Adv Sci (Weinh) ; : e2400642, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647258

ABSTRACT

Kidney stones are a pervasive disease with notoriously high recurrence rates that require more effective treatment strategies. Herein, tartronic acid is introduced as an efficient inhibitor of calcium oxalate monohydrate (COM) crystallization, which is the most prevalent constituent of human kidney stones. A combination of in situ experimental techniques and simulations are employed to compare the inhibitory effects of tartronic acid with those of its molecular analogs. Tartronic acid exhibits an affinity for binding to rapidly growing apical surfaces of COM crystals, thus setting it apart from other inhibitors such as citric acid, the current preventative treatment for kidney stones. Bulk crystallization and in situ atomic force microscopy (AFM) measurements confirm the mechanism by which tartronic acid interacts with COM crystal surfaces and inhibits growth. These findings are consistent with in vivo studies that reveal the efficacy of tartronic acid is similar to that of citric acid in mouse models of hyperoxaluria regarding their inhibitory effect on stone formation and alleviating stone-related physical harm. In summary, these findings highlight the potential of tartronic acid as a promising alternative to citric acid for the management of calcium oxalate nephropathies, offering a new option for clinical intervention in cases of kidney stones.

6.
ACS Med Chem Lett ; 15(3): 406-412, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38505849

ABSTRACT

Ferroptosis is a novel form of oxidative cell death triggered by iron-dependent lipid peroxidation. The induction of ferroptosis presents an attractive therapeutic strategy for human diseases, such as prostate cancer and breast cancer. Herein, we describe our design, synthesis, and biological evaluation of endogenous glutathione peroxidase 4 (GPX4) degraders using the proteolysis targeting chimera (PROTAC) approach with the aim of inducing ferroptosis in cancer cells. Our efforts led to the discovery of compound 5i (ZX703), which significantly degraded GPX4 through the ubiquitin-proteasome and the autophagy-lysosome pathways in a dose- and time-dependent manner. Moreover, 5i was found to induce the accumulation of lipid reactive oxygen species (ROS) in HT1080 cells, thereby inducing ferroptosis. This study provides an attractive intervention strategy for ferroptosis-related diseases.

7.
Biomolecules ; 14(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38540732

ABSTRACT

A growing number of studies have indicated that extracellular vesicles (EVs), such as exosomes, are involved in the development of neurodegenerative diseases. Components of EVs with biological effects like proteins, nucleic acids, or other molecules can be delivered to recipient cells to mediate physio-/pathological processes. For instance, some aggregate-prone proteins, such as ß-amyloid and α-synuclein, had been found to propagate through exosomes. Therefore, either an increase of detrimental molecules or a decrease of beneficial molecules enwrapped in EVs may fully or partly indicate disease progression. Numerous studies have demonstrated that dysbiosis of the gut microbiota and neurodegeneration are tightly correlated, well-known as the "gut-brain axis". Accumulating evidence has revealed that the gut bacteria-derived EVs play a pivotal role in mediating microbe-host interactions and affect the function of the "gut-brain axis", which subsequently contributes to the pathogenesis of neurodegenerative diseases. In this review, we first briefly discuss the role of EVs from mammalian cells and microbes in mediating the progression of neurodegenerative diseases, and then propose a novel strategy that employs EVs of plants (plant cell-derived exosome-like nanoparticles) for treating neurodegeneration.


Subject(s)
Exosomes , Extracellular Vesicles , Neurodegenerative Diseases , Animals , Neurodegenerative Diseases/metabolism , Plant Cells/metabolism , Extracellular Vesicles/metabolism , Exosomes/metabolism , Bacteria , Mammals
8.
Chem Biodivers ; : e202400110, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424689

ABSTRACT

Drugs with anti-platelet aggregation and neuroprotection are of great significance for the treatment of ischemic stroke. A series of edaravone and 6-phenyl-4,5-dihydropyridazin-3(2H)-one hybrids were designed and synthesized. Among them, 6g showed the most effective cytoprotective effect against oxygen-glucose deprivation/reoxygenation-induced damage in BV2 cells and an excellent inhibitory effect on platelet aggregation induced by adenosine diphosphate and arachidonic acid. Additionally, 6g could prevent thrombosis caused by ferric chloride in rats and pose a lower risk of causing bleeding compared with aspirin. It provides better protection against ischemia/reperfusion injury in rats compared with edaravone and alleviates the oxidative stress related to cerebral ischemia/reperfusion by increasing the GSH and SOD levels and decreasing the MDA concentration. Finally, molecular docking results showed that 6g probably acts on PDE3 A and plays an anti-platelet aggregation effect. Overall, 6g could be a potential candidate compound for the treatment of ischemic stroke.

9.
Front Immunol ; 15: 1367265, 2024.
Article in English | MEDLINE | ID: mdl-38550589

ABSTRACT

Background: Evidence shows people living with CHB even with a normal ALT (40U/L as threshold) suffer histological disease and there is still little research to evaluate the potential benefit of antiviral benefits in them. Methods: We retrospectively examined 1352 patients who underwent liver biopsy from 2017 to 2021 and then obtained their 1-year follow-up data to analyze. Results: ALT levels were categorized into high and low, with thresholds set at >29 for males and >15 for females through Youden's Index. The high normal ALT group showed significant histological disease at baseline (56.43% vs 43.82%, p< 0.001), and better HBV DNA clearance from treatment using PSM (p=0.005). Similar results were obtained using 2016 AASLD high normals (male >30, female >19). Further multivariate logistic analysis showed that high normal ALT (both criterias) was an independent predictor of treatment (OR 1.993, 95% CI 1.115-3.560, p=0.020; OR 2.000, 95% CI 1.055-3.793, p=0.034) Both of the models had higher AUC compared with current scoring system, and there was no obvious difference between the two models (AUC:0.8840 vs 0.8835). Conclusion: Male >30 or female >19 and Male >29 or female>15 are suggested to be better thresholds for normal ALT. Having a high normal ALT in CHB provides a potential benefit in antiviral therapy.


Subject(s)
Hepatitis B, Chronic , Humans , Male , Female , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/pathology , Alanine Transaminase , Retrospective Studies , DNA, Viral , Antiviral Agents/therapeutic use
10.
Acta Biomater ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38490483

ABSTRACT

Nanoscale coordination polymer (NCP) is a class of hybrid materials formed by self-assembly of metal ions and organic ligands through coordination. The applications of NCP in biomedicine are quite extensive due to the diversity choice of metal ions and organic ligands. Here we designed Zr-P1 NCP based on Zr4+ selected as metal ion nodes and tetrakis(4-carboxyphenyl) ethylene as bridging ligands. Zr-P1 NCP was modified with functionalized pyrene derived polyethylene glycol (Py-PAA-PEG-Mal) on the surface and further conjugated with cRGD for active targeting of integrin αvß3 overexpressed in triple-negative breast cancer. Doxorubicin was loaded on Zr-P1 NCP with encapsulation efficiency up to 22 % for the treatment of triple negative breast cancer. 89Zr-P1 NCP can be used for in vivo tumor imaging due to the fluorescence properties resulting from the enhanced aggregation-induced Emission (AIE) behavior of P1 ligands and its positron emission tomography (PET) capability. Cellular evaluation indicated that the functionalized Zr-P1@PEG-RGD presented a good function for tumor cell targeting imaging and doxorubicin could be targeted to triple negative breast cancer when it was loaded onto Zr-P1@PEG-RGD, which corroborated with the in vivo results. In summary, 89Zr-P1@PEG-RGD can serve as a biocompatible nanoplatform for fluorescence and PET image-guided cargo delivery. STATEMENT OF SIGNIFICANCE: Nanoscale coordination polymer (NCP) is a class of hybrid materials formed by self-assembly of metal ions and organic ligands through coordination. The diversity of available metals and ligand structures upon NCP synthesis plays an advantage in establishing multimodal imaging platforms. Here we designed 89Zr-P1@PEG-RGD NCP based on Zr4+ selected as metal ion nodes and tetrakis(4-carboxyphenyl) ethylene as bridging ligands. 89Zr-P1@PEG-RGD nanomaterials have positron emission tomography (PET) capability due to the incorporation of zirconium-89, which can be used for in vivo tumor imaging with high sensitivity. The chemotherapeutic drug DOX was loaded on Zr-P1 NCP for the treatment of triple-negative breast cancer, and dual modality imaging can provide visual guidance for drug delivery.

11.
Cell Death Dis ; 15(1): 83, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263255

ABSTRACT

DNA topoisomerase II (TOP2) is an enzyme that performs a critical function in manipulating DNA topology during replication, transcription, and chromosomal compaction by forming a vital intermediate known as the TOP2-DNA cleavage complex (TOP2cc). Although the TOP2cc is often transient, stabilization can be achieved by TOP2 poisons, a family of anti-cancer chemotherapeutic agents targeting TOP2, such as etoposide (VP-16), and then induce double-strand breaks (DSBs) in cellular DNA. TOP2cc first needs to be proteolyzed before it can be processed by TDP2 for the removal of these protein adducts and to produce clean DNA ends necessary for proper repair. However, the mechanism by which TOP2ßcc is proteolyzed has not been thoroughly studied. In this study, we report that after exposure to VP-16, MDM2, a RING-type E3 ubiquitin ligase, attaches to TOP2ß and initiates polyubiquitination and proteasomal degradation. Mechanistically, during exposure to VP-16, TOP2ß binds to DNA to form TOP2ßcc, which promotes MDM2 binding and subsequent TOP2ß ubiquitination and degradation, and results in a decrease in TOP2ßcc levels. Biologically, MDM2 inactivation abrogates TOP2ß degradation, stabilizes TOP2ßcc, and subsequently increases the number of TOP2ß-concealed DSBs, resulting in the rapid death of cancer cells via the apoptotic process. Furthermore, we demonstrate the combination activity of VP-16 and RG7112, an MDM2 inhibitor, in the xenograft tumor model and in situ lung cancer mouse model. Taken together, the results of our research reveal an underlying mechanism by which MDM2 promotes cancer cell survival in the presence of TOP2 poisons by activating proteolysis of TOP2ßcc in a p53-independent manner, and provides a rationale for the combination of MDM2 inhibitors with TOP2 poisons for cancer therapy.


Subject(s)
DNA Topoisomerases, Type II , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Disease Models, Animal , DNA , DNA-Binding Proteins , Etoposide , Phosphoric Diester Hydrolases , Proteolysis
12.
J Food Sci ; 89(2): 1261-1279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38174784

ABSTRACT

The aims of this study were to establish a novel method for simultaneously determining 61 acid dyes in chili, hotpot seasoning, and bearnaise sauce using double liquid-liquid extraction (d-LLE) technology. A mixture of water, methanol, and dichloromethane (1:3:1, v/v/v) was used as the extraction solution, which was actively separated into aqueous and organic phases at a fixed ratio. The clean-up step was initially completed by discarding the organic phase layer, which contained abundant lipophilic compounds. Subsequently, the aqueous phase was further separated by salting out, which effectively removed interference from the highly hydrophilic compounds. As a result of these two purification steps, the matrix suppression effect was significantly reduced by a minimum of 16.9%. Finally, the extract was analyzed using an ultrahigh-performance liquid chromatography-quadrupole Orbitrap mass spectrometer (UHPLC-Q-Orbitrap-MS), and the characteristic ion fragments (SO3 - , m/z 79.9557) of the acid dyes were utilized for the preliminary qualitative analysis. The results showed that the 61 acid dyes showed a good linear relationship in the range of 0.01-0.2 µg/mL, and the limit of quantification (LOQ) was 0.01 mg/kg. The average recoveries were 74.3%-99.7%, with relative standard deviations (RSD) ≤10%. The proposed method can rapidly identify and quantify acid dyes in complex foods at a low cost, with high sensitivity and reliability.


Subject(s)
Coloring Agents , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Limit of Detection , Chromatography, Liquid
13.
Chemosphere ; 350: 141100, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171393

ABSTRACT

Ester-containing deltamethrin pesticides are widely used in farmland and have inevitable side effects on the biosphere and human health. Microbia have been used for efficient degradation of deltamethrin, but the related mechanism and enzyme characteristics have not been elucidated. In this study, a species Brevibacillus parabrevis BCP-09 could degrade up to 75 mg L-1 deltamethrin with a degradation efficiency of 95.41%. Proteomic and genomic methods were used to explore its degradation mechanism. Enzymes belonged to hydrolases, oxidases and aromatic compound degrading enzymes were expressed enhanced and might participate in the deltamethrin degradtion. RT-PCR experiment and enzyme activity analysis verified the degradation of deltamethrin by bacterial protein. Additionally, the formation of endospores can help strain BCP-09 resist the toxicity of deltamethrin and enhance its degradation. This study supplies a scientific evidence for the application of Brevibacillus parabrevis BCP-09 in the bioremediation of environmental pollution and enriches the resources of deltamethrin-biodegradable proteins.


Subject(s)
Brevibacillus , Nitriles , Proteomics , Pyrethrins , Humans , Biodegradation, Environmental , Brevibacillus/genetics , Brevibacillus/metabolism
14.
Bioorg Med Chem ; 98: 117584, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38168629

ABSTRACT

Transient receptor potential melastatin 4 (TRPM4) is considered to be a potential target for cancer and other human diseases. Herein, a series of 2-(naphthalen-1-yloxy)-N-phenylacetamide derivatives were designed and synthesized as new TRPM4 inhibitors, aiming to improve cellular potency. One of the most promising compounds, 7d (ZX08903), displayed promising antiproliferative activity against prostate cancer cell lines. 7d also suppressed colony formation and the expression of androgen receptor (AR) protein in prostate cancer cells. Furthermore, 7d can concentration-dependently induce cell apoptosis in prostate cancer cells. Collectively, these findings indicated that compound 7d may serve as a promising lead compound for further anticancer drug development.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , TRPM Cation Channels , Male , Humans , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Cell Proliferation , Structure-Activity Relationship , Drug Design , Drug Screening Assays, Antitumor , Molecular Structure
15.
Adv Healthc Mater ; 13(7): e2301146, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176000

ABSTRACT

Ribonucleic acids (RNA) play active roles within cells or viruses by catalyzing biological reactions, controlling gene expression, and communicating responses to cellular signals. Rapid monitoring RNA variation has become extremely important for appropriate clinical decisions and frontier biological research. However, the most widely used method for RNA detection, nucleic acid amplification, is restricted by a mandatory temperature cycling period of ≈1 h required to reach target detection criteria. Herein, a direct detection approach via single-atom site integrated surface-enhanced Raman scattering (SERS) monitoring nucleic acid pairing reaction, can be completed within 3 min and reaches high sensitivity and extreme reproducibility for COVID-19 and two other influenza viruses' detection. The mechanism is that a single-atom site on SERS chip, enabled by positioning a single-atom oxide coordinated with a specific complementary RNA probe on chip nanostructure hotspots, can effectively bind target RNA analytes to enrich them at designed sites so that the binding reaction can be detected through Raman signal variation. This ultrafast, sensitive, and reproducible single-atom site SERS chip approach paves the route for an alternative technique of immediate RNA detection. Moreover, single-atom site SERS is a novel surface enrichment strategy for SERS active sites for other analytes at ultralow concentrations.


Subject(s)
Metal Nanoparticles , Nucleic Acids , Reproducibility of Results , Limit of Detection , Metal Nanoparticles/chemistry , RNA , Spectrum Analysis, Raman/methods , Gold/chemistry
16.
Diabetes Metab Syndr ; 18(1): 102939, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38181721

ABSTRACT

AIMS: This study aims to investigate the interplay between hepatitis C virus (HCV) infection and major forms of diabetes: type 1 diabetes (T1D), type 2 diabetes (T2D), and latent autoimmune diabetes in adults (LADA). METHODS: This multicenter study analyzed a cohort of 2699 diabetic and 7344 non-diabetic subjects who visited medical centers in China from 2014 to 2021. T1D, T2D, LADA, and HCV were diagnosed using standard procedures. High-throughput sequencing was conducted to identify genetic footprints of human leukocyte antigen (HLA) alleles and haplotypes at the DRB1, DQA1, and DQB1 loci. RESULTS: HCV infection was detected in 3 % (23/766) of LADA patients, followed by 1.5 % (15/977) of T2D patients, 1.4 % (13/926) of T1D patients, and 0.5 % (38/7344) of non-diabetic individuals. HCV prevalence was significantly higher in people with diabetes than in non-diabetic individuals (p < 0.01). HLA alleles (DQB1*060101, DQB1*040101) and haplotypes (DRB1*080302-DQA1*010301-DQB1*060101) in LADA patients with HCV revealed higher frequencies than in LADA patients without HCV (adjusted p < 0.03). Furthermore, a higher risk of diabetes complications was found among LADA patients with HCV infection (p < 0.001). CONCLUSIONS: LADA patients are susceptible to HCV infection, potentially associated with certain HLA alleles/haplotypes. Early diagnosis and treatment of HCV infection among people with diabetes are important for the management of severe complications.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Hepatitis C , Latent Autoimmune Diabetes in Adults , Adult , Humans , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Hepacivirus/genetics , Cross-Sectional Studies , Latent Autoimmune Diabetes in Adults/epidemiology , Latent Autoimmune Diabetes in Adults/genetics , Genetic Predisposition to Disease , Haplotypes , HLA Antigens/genetics , Comorbidity , Hepatitis C/complications , Hepatitis C/epidemiology , Hepatitis C/genetics , Gene Frequency
17.
Environ Sci Pollut Res Int ; 31(2): 1964-1979, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38051489

ABSTRACT

Photocatalytic persulfate activation by TiO2 and its application in sewage treatment have aroused great interest because of its high decontamination ability and strong adaptability, but the low light energy utilization rate and poor recycling of TiO2 limited its practical application. Herein, by using C-, N-, and B-modified TiO2 and immobilizing it on copper foam, we prepared a new and efficient (C,N,B)-TiO2/copper foam photocatalyst with enhanced visible-light activation performance of persulfate for the removal of RhB. It almost completely degraded RhB within 15 min of UV-vis light photocatalysis-assisted persulfate oxidation reaction with TOC removal of 53.17% in 30 min and presented the excellent long-term recyclability and stability, which is much better or comparative than those photocatalysts in the related literatures. (C,N,B)-TiO2/copper foam exhibited the largest apparent rate constant (0.149 min-1), 1.16 times higher than (C,N,B)-TiO2 (0.128 min-1), and 2.40 times higher than that of TiO2 (0.062 min-1), respectively. C,N,B doping modified the crystalline phase of TiO2, narrowed its band gap, and reduced charge-carrier recombination rate. These, together with the synergistic effect between photocatalysis and persulfate activation for enhancing generation of active species, jointly promoted the performance enhancement of TiO2. The 1O2 was the primary oxidation active species for the degradation of RhB, and the radical species (SO4•-, •O2-, and •OH) could further accelerate the photocatalytic activation of persulfate reaction.


Subject(s)
Copper , Titanium , Titanium/chemistry , Catalysis , Light , Ultraviolet Rays
18.
J Gene Med ; 26(1): e3586, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37655535

ABSTRACT

BACKGROUND: In recent decades, osteosarcoma has remained the most prevalent kind of malignant tumor. An important and crucial factor in immunotherapy is antigen processing and presentation (APP). The specific functions and pathogenic processes of APP in osteosarcoma have not, however, been studied. METHODS: Patients with osteosarcoma were divided into groups using APP-related genes. Machine learning was used to further build the APP-related score. Investigated in-depth were the prognostic relevance of the score, mutation features, immunological aspects, and pharmacological prediction performance. Investigations of the prognostic utility, immunological traits, drug prediction effectiveness and immunotherapy prediction of BNIP3 were performed in-depth. RESULTS: Investigations by cell counting kit-8, Transwell and 5-ethynyl-2-deoxyuridine (EdU) demonstrated that BNIP3 is an osteosarcoma tumor accelerator. The osteosarcoma gene BNIP3 may promote macrophage migration. The APP-related score shows potential for clinical use. CONCLUSIONS: It was anticipated that more in vitro and in vivo studies would confirm BNIP3's tumorigenic and immunogenic processes in osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Antigen Presentation , Oncogenes , Osteosarcoma/genetics , Osteosarcoma/therapy , Machine Learning , Immunotherapy , Bone Neoplasms/genetics , Bone Neoplasms/therapy , Membrane Proteins/genetics , Proto-Oncogene Proteins/genetics
19.
Postgrad Med J ; 100(1181): 179-186, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38079630

ABSTRACT

OBJECTIVES: We determined the common clinical characteristics of patients infected with Helicobacter pylori (H. pylori) and investigated the relationship between H. pylori infection, and clinical symptoms, and gastroscopic manifestations. Our focus was specifically on the clinical manifestations in asymptomatic patients. METHODS: We obtained the physical examination data of patients who underwent the 14C urea breath test between January 2018 and December 2020 at our Hospital. Basic demographic data, questionnaire data on clinical symptoms, and clinical examination data of the patients were also collected, and the correlation analysis was performed. RESULTS: A total of 2863 participants were included in the study. The overall H. pylori infection rate was 26.30%. The clinical symptoms between H. pylori-positive patients and H. pylori-negative patients did not differ significantly (P > .05). However, H. pylori-positive patients exhibited more severe gastroscopic manifestations (P < .001). The 14C urea breath test disintegrations per minute (DPM) values in H. pylori-positive patients correlated with their serum pepsinogen and gastrin-17 levels. With an increase in the DPM value, more combinations of clinical symptoms appeared in the patients. Among H. pylori-positive patients, DPM levels in asymptomatic patients were lower than those in symptomatic patients (P < .001). However, gastroscopic manifestations did not vary significantly between asymptomatic and symptomatic patients (P > .05). CONCLUSION: Patients infected with H. pylori showed no specific gastrointestinal symptoms. Patients with asymptomatic infection showed lower DPM levels, but their gastroscopic manifestations were similar to those of patients with symptomatic infection, and their lesions were more severe than H. pylori-negative people.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Asymptomatic Infections/epidemiology , Urea/analysis , Gastroscopy , Helicobacter Infections/diagnosis , Helicobacter Infections/epidemiology , Carbon Radioisotopes
20.
Food Chem Toxicol ; 184: 114414, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128688

ABSTRACT

Identification and pretreatment analysis of endogenous metabolites of patulin (PAT) in zebrafish were successfully carried out using UHPLC-Q-Orbitrap-HRMS. Three major metabolites, namely hydroascladiol, E-ascladiol, and Z-ascladiol, were identified. They exhibited similar fragmentation pathways to PAT, with the structurally significant ions *b' and *c' generated through the cleavage of the side chains of *b and *c, respectively. These ions were crucial for confirming the modification site and have been confirmed as characteristic fragments for the identification of PAT metabolites. Furthermore, a pretreatment method for analyzing PAT and the three metabolites in zebrafish was proposed, using solid-phase-assisted liquid/liquid extraction (SLLE) and matrix solid-phase dispersion (MSPD) techniques. The initial purification process involved loading the aqueous phase onto a macroporous diatomaceous column, followed by elution with acetonitrile. Following this, neutral alumina powder was added to the organic phase, effectively eliminating interference from hydrophilic and lipid-soluble compounds through the optimization of this step. Due to their structural similarity, the three metabolites were semi-quantitatively analyzed using a PAT standard curve. The results demonstrated a good linear relationship in the concentration range of 0.001-0.02 µg/mL (r2 ≥ 0.999). The limit of detection for PAT and the three metabolites ranged from 0.01 to 0.03 mg/kg.


Subject(s)
Patulin , Zebrafish , Animals , Chromatography, High Pressure Liquid/methods , Patulin/analysis , Solid Phase Extraction/methods , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...